Which nutrient is absorbed by the lacteals of the small intestine




















They have several important features:. The hepatic portal vein transports absorbed food from the small intestine to the liver. Absorption Absorption is the movement of digested food molecules through the wall of the intestine into the blood or lymph. Two types of pancreatic nuclease are responsible for their digestion: deoxyribonuclease , which digests DNA, and ribonuclease , which digests RNA.

The nucleotides produced by this digestion are further broken down by two intestinal brush border enzymes nucleosidase and phosphatase into pentoses, phosphates, and nitrogenous bases, which can be absorbed through the alimentary canal wall. The large food molecules that must be broken down into subunits are summarized in Table 2.

The mechanical and digestive processes have one goal: to convert food into molecules small enough to be absorbed by the epithelial cells of the intestinal villi. The absorptive capacity of the alimentary canal is almost endless. Each day, the alimentary canal processes up to 10 liters of food, liquids, and GI secretions, yet less than one liter enters the large intestine.

Almost all ingested food, 80 percent of electrolytes, and 90 percent of water are absorbed in the small intestine. Although the entire small intestine is involved in the absorption of water and lipids, most absorption of carbohydrates and proteins occurs in the jejunum. Notably, bile salts and vitamin B 12 are absorbed in the terminal ileum. By the time chyme passes from the ileum into the large intestine, it is essentially indigestible food residue mainly plant fibers like cellulose , some water, and millions of bacteria.

Figure 5. Absorption is a complex process, in which nutrients from digested food are harvested. Absorption can occur through five mechanisms: 1 active transport, 2 passive diffusion, 3 facilitated diffusion, 4 co-transport or secondary active transport , and 5 endocytosis.

As you will recall from Chapter 3, active transport refers to the movement of a substance across a cell membrane going from an area of lower concentration to an area of higher concentration up the concentration gradient. Passive diffusion refers to the movement of substances from an area of higher concentration to an area of lower concentration, while facilitated diffusion refers to the movement of substances from an area of higher to an area of lower concentration using a carrier protein in the cell membrane.

Co-transport uses the movement of one molecule through the membrane from higher to lower concentration to power the movement of another from lower to higher. Finally, endocytosis is a transportation process in which the cell membrane engulfs material. It requires energy, generally in the form of ATP. Moreover, substances cannot pass between the epithelial cells of the intestinal mucosa because these cells are bound together by tight junctions. Thus, substances can only enter blood capillaries by passing through the apical surfaces of epithelial cells and into the interstitial fluid.

Water-soluble nutrients enter the capillary blood in the villi and travel to the liver via the hepatic portal vein. In contrast to the water-soluble nutrients, lipid-soluble nutrients can diffuse through the plasma membrane.

Once inside the cell, they are packaged for transport via the base of the cell and then enter the lacteals of the villi to be transported by lymphatic vessels to the systemic circulation via the thoracic duct. The absorption of most nutrients through the mucosa of the intestinal villi requires active transport fueled by ATP. The routes of absorption for each food category are summarized in Table 3. All carbohydrates are absorbed in the form of monosaccharides.

The small intestine is highly efficient at this, absorbing monosaccharides at an estimated rate of grams per hour. All normally digested dietary carbohydrates are absorbed; indigestible fibers are eliminated in the feces. The monosaccharides glucose and galactose are transported into the epithelial cells by common protein carriers via secondary active transport that is, co-transport with sodium ions.

The monosaccharides leave these cells via facilitated diffusion and enter the capillaries through intercellular clefts. The monosaccharide fructose which is in fruit is absorbed and transported by facilitated diffusion alone.

The monosaccharides combine with the transport proteins immediately after the disaccharides are broken down. Active transport mechanisms, primarily in the duodenum and jejunum, absorb most proteins as their breakdown products, amino acids. Almost all 95 to 98 percent protein is digested and absorbed in the small intestine.

The type of carrier that transports an amino acid varies. Most carriers are linked to the active transport of sodium. Short chains of two amino acids dipeptides or three amino acids tripeptides are also transported actively. However, after they enter the absorptive epithelial cells, they are broken down into their amino acids before leaving the cell and entering the capillary blood via diffusion. About 95 percent of lipids are absorbed in the small intestine.

Bile salts not only speed up lipid digestion, they are also essential to the absorption of the end products of lipid digestion. Short-chain fatty acids are relatively water soluble and can enter the absorptive cells enterocytes directly. Despite being hydrophobic, the small size of short-chain fatty acids enables them to be absorbed by enterocytes via simple diffusion, and then take the same path as monosaccharides and amino acids into the blood capillary of a villus.

The large and hydrophobic long-chain fatty acids and monoacylglycerides are not so easily suspended in the watery intestinal chyme. However, bile salts and lecithin resolve this issue by enclosing them in a micelle , which is a tiny sphere with polar hydrophilic ends facing the watery environment and hydrophobic tails turned to the interior, creating a receptive environment for the long-chain fatty acids.

The core also includes cholesterol and fat-soluble vitamins. Without micelles, lipids would sit on the surface of chyme and never come in contact with the absorptive surfaces of the epithelial cells.

Micelles can easily squeeze between microvilli and get very near the luminal cell surface. At this point, lipid substances exit the micelle and are absorbed via simple diffusion. The primary function of the small intestine is the absorption of nutrients and minerals found in food.

Intestinal villus : An image of a simplified structure of the villus. The thin surface layer appear above the capillaries that are connected to a blood vessel. The lacteal is surrounded by the capillaries. Digested nutrients pass into the blood vessels in the wall of the intestine through a process of diffusion. The inner wall, or mucosa, of the small intestine is lined with simple columnar epithelial tissue. Structurally, the mucosa is covered in wrinkles or folds called plicae circulares—these are permanent features in the wall of the organ.

They are distinct from the rugae, which are non-permanent features that allow for distention and contraction. From the plicae circulares project microscopic finger-like pieces of tissue called villi Latin for shaggy hair. The individual epithelial cells also have finger-like projections known as microvilli.



0コメント

  • 1000 / 1000